United Kingdom Mathematics Trust

Intermediate Mathematical Challenge

Solutions 2020

© 2020 UK Mathematics Trust

Abstract

For reasons of space, these solutions are necessarily brief. There are more in-depth, extended solutions available on the UKMT website, which include some exercises for further investigation:

www.ukmt.org.uk

1. A The value of $2-(3-4)-(5-6-7)=2-(-1)-(-1-7)=2+1-(-8)=2+1+8=11$.
2. E The correct answer is a multiple of both 3 and 8 , as $24=3 \times 8$. Although 100 is a multiple of 4 , it is not a multiple of 8 . Therefore even multiples of 100 are multiples of 8 , but odd multiples are not. This leaves 200, 400 and 600 , but of these only 600 is also a multiple of 3 .
Hence the only option which is a multiple of 24 is 600 .
3. B The required difference is 25% of $(£ 37-£ 17)=25 \%$ of $£ 20$.

Hence the difference between 25% of $£ 37$ and 25% of $£ 17$ is $£ 5$.
4. D We choose units so the outer square has side-length 4 , and hence area 16 .

The unshaded area of the square consists of two congruent triangles of base 3 and height 2 .
So the area of each unshaded triangle is $\frac{1}{2} \times 3 \times 2=3$.
Hence the area of the shaded part of the square is $16-2 \times 3=10$.
Therefore the fraction of the square which is shaded is $\frac{10}{16}=\frac{5}{8}$.
5. D First note that $A B=\sqrt{13}, A C=\sqrt{26}, A D=\sqrt{17}$ and $A E=\sqrt{13}$. Thus $A B=A E$.

Note also that $B C=\sqrt{13}$ and $C E=\sqrt{13}$. Therefore $A B C E$ is a rhombus.
Finally, $B E=\sqrt{26}$, so $A B C E$ is a rhombus with two equal diagonals and hence is a square.
So $(3,5)$ is the odd point out.
6. C The values of the five options are 64, 243, 256, 125, 36 respectively.

Of these 256 is the largest, so 4^{4} is the largest of the options.
7. $\quad \mathbf{B} \quad$ We label the five squares, from left to right, P, Q, R, S, T respectively.

In order to paint two adjacent squares, Lucy could paint P and Q, or Q and R, or R and S, or S and T. So in four of the finished grids, Lucy's red squares are adjacent to each other.
8. E Since the units digits of all the options are different, it is sufficient to add the units digits of the four squares in the sum. As $7^{2}=49,17^{2}$ has a units digit of 9 . In a similar way, we calculate that 19^{2} has a units digit of $1,23^{2}$ has a units digit of 9 and 29^{2} has a units digit of 1. Therefore the units digit of the given sum is the units digit of $9+1+9+1$, that is 0 . As we are told that the correct answer is one of the options, we may deduc that it is 2020 .
9. E Note that the numbers 123 to 213 are in both option A and option C. Also, numbers 213 to

231 are in both option B and option C, and numbers 231 to 312 are in both C and D. However, numbers 313 to 321 are in option E only. So that must be where Adam's house is.
10. B The value of $\frac{2468 \times 2468}{2468+2468}$ is $\frac{2468 \times 2468}{2 \times 2468}=\frac{2468}{2}$.

Hence the correct answer is 1234 .
11. \mathbf{E} There is exactly one route from " 1 " to " 2 ", but two routes from " 1 " to " 3 " - one route directly from " 1 " to " 3 " and one route which moves from " 1 " to " 2 " to " 3 ".
To move from "1" to "4", it is necessary to move from "2" directly to " 4 " or to move from " 3 " to "4". So the number of routes from " 1 " to " 4 " is $1+2=3$.
By a similar method, the number of routes from " 1 " to " 5 " is $2+3=5$ and from " 1 " to " 6 " is $3+5=8$. Finally, the number of routes from " 1 " to " 7 " is $5+8=13$.
(Note that the numbers of routes to each of the squares is a term in the Fibonacci sequence.)
12. B Let the number of chickens and goats sold be c and g respectively.

Then, since 80 animals are sold, we have $c+g=80$.
Also, $2 c+4 g=200$, since the chickens have two legs and the goats have four legs.
Dividing the second equation by 2 , we obtain $c+2 g=100$.
Then, subtracting the first equation gives $g=100-80=20$.
So 20 goats were sold.
13. C Half of 1.6×10^{6} equals $0.8 \times 10^{6}=0.8 \times 10 \times 10^{5}=8 \times 10^{5}$.
14. A Note that $9 \times 11 \times 13 \times 15 \times 17$ is a multiple of 9 . Therefore the sum of its digits is also a multiple of 9 . The sum of the digits of ' $3 n 8185$ ' equals $25+n$. So $n=2$, since 27 is a multiple of 9 .
15. A The diagrams show one of the twenty-five congruent right-angled triangles and the two such triangles at vertex R .
Let the two acute angles in each of the triangles be x° and y°.

Note that $x+y+90=180$, as the interior angles of a triangle sum to 180°.
So $x+y=90$. In the second diagram, the two angles which meet at R are x° and y°, so we can deduce that angle $Q R P$ is a right angle.
Let the length of the hypotenuse of each small triangle be $a \mathrm{~cm}$.
Note that angle $Q R P$ is a right angle, $P R$ has length $4 a \mathrm{~cm}$ and $R Q$ has length $3 a \mathrm{~cm}$.
So the lengths of the sides in triangle $P Q R$ are in the ratio 3:4:5.
Therefore the length of $P Q$, in cm , is $5 \times \frac{2.4}{4}=3$.
16. \mathbf{E} The sum of $\frac{1}{9}+\frac{1}{11}$ is $\frac{11}{99}+\frac{9}{99}$, that is $\frac{20}{99}$.

Now 20 and 99 do not have any factors in common except 1. So the fraction cannot be simplified. In option A, we may write 0.10 as the fraction $\frac{10}{100}$, whose denominator is a power of 10 . The same is true of options B, C and D. Therefore, when simplified, none of these fractions can have 99 as a denominator.
It is left to the reader to confirm, by division, that $\frac{20}{99}=0 . \dot{2} \dot{0}$.
An alternative argument follows.
Let $x=0 . \dot{2} \dot{0}=0.202020 \ldots$. Then $100 x=20.202020 \ldots$.
Subtracting the first equation from the second gives $99 x=20$.

So $0 . \dot{2} \dot{0}=\frac{20}{99}$.
17. E Suppose that at a particular stage there are m tarts available for a Knave to eat and that there are n left after he has finished eating.
Then $n=m-\left(\frac{1}{2} m+\frac{1}{2}\right)=\frac{1}{2} m-\frac{1}{2}$.
Therefore, $m=2 n+1$.
As the Knave of Spades received one tart, then the number of tarts which the Knave of Clubs was given was $2 \times 1+1=3$.
Similarly, the number of tarts which the Knave of Diamonds was given was $2 \times 3+1=7$.
Finally, the number of tarts which the Knave of Hearts stole was $2 \times 7+1=15$.
18. Cet the length of each equal side of the given triangle be x.

Then, by Pythagoras' theorem, $x^{2}+x^{2}=y^{2}$. So $x^{2}=\frac{y^{2}}{2}$.
In the triangle, four of the squares are shaded while the unshaded area consists of two squares and four half-squares.
Therefore, half of the area of the triangle is shaded.
Now the area of the triangle is $\frac{1}{2} \times x \times x=\frac{1}{2} x^{2}$.
Therefore the total shaded area of the triangle is $\frac{1}{4} x^{2}=\frac{1}{4} \times \frac{y^{2}}{2}=\frac{y^{2}}{8}$.
19. B The diagram shows the top left-hand corner of the original diagram.

The centre of the semicircle shown is Q. Also, U and S are the points where the edges of the bigger square touch the semicircle shown.
Therefore both $Q U$ and $Q S$ are radii of the semicircle and $\angle T S Q=\angle T U Q=90^{\circ}$. Also $\angle U T S$ is a right angle as it is the corner of a square. Therefore $U Q S T$ is a square. Hence $Q S=S T$.

Note that $T R=T P$ because P and R are midpoints of the original large square. Therefore $\angle P R T=45^{\circ}$. So $Q S=R S$.
Hence $Q S$ is half the length of $T R$, which is itself half of the length of a side of the outer square, which is 48 cm .
So the radius of the semicircle is one quarter of $48 \mathrm{~cm}=12 \mathrm{~cm}$.
20. D The first four expressions expand to $x^{2}-1 ; x^{2}-\frac{1}{4} ; x^{2}-\frac{1}{9} ; x^{2}-\frac{1}{16}$ respectively.

Note that $\frac{1}{16}<\frac{1}{9}<\frac{1}{4}<1$. Therefore the least value is $x^{2}-\frac{1}{16}$, that is $\left(x+\frac{1}{4}\right)\left(x-\frac{1}{4}\right)$.
This result is irrespective of the value of x.
21. B In the diagram, $S R$ is the diameter of the upper small semicircle and P and Q are the centres of the two lower small semicircles. Note that the line $S R$ touches the two semicircles with centres P and Q at points S and R respectively.
So $\angle S R Q=\angle R S P=90^{\circ}$.
Also, $S R=P Q=2 \mathrm{~cm}$. Therefore $P Q R S$ is a rectangle.

The total unshaded area in the diagram is the rectangle plus a semicircle and two quarter circles, that is, the rectangle plus a circle. So, in cm^{2}, it is $1 \times 2+\pi \times 1^{2}=2+\pi$.
So the total shaded area, in cm^{2}, is $\frac{1}{2} \times \pi \times 2^{2}-(2+\pi)=2 \pi-(\pi+2)=\pi-2$.
Hence the required area, in cm^{2}, is $\pi-2$.
22. C The exterior angle of a regular pentagon is $\frac{360^{\circ}}{5}=72^{\circ}$.

Therefore the interior angle of a regular pentagon, in degrees, is $180-72=108$. The angles at a point sum to 360°, so the reflex angle in the irregular quadrilateral, in degrees, is $360-108=252$. Finally the interior angles of a quadrilateral sum to 360°, so the sum of the marked angles, in degrees, is $360-252=108$.
(Note that the sum of the three marked angles equals the interior angle of the pentagon.)
23. A Let the small sides of each triangle have length r. This is also the side of the original square. The longer side of each triangle is $\sqrt{2} r$, since that is the diagonal of the square.
Hence the perimeters of shapes $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are $(2+3 \sqrt{2}) r,(6+\sqrt{2}) r$ and $(4+3 \sqrt{2}) r$ respectively. Now $6+\sqrt{2}-(2+3 \sqrt{2})=4-2 \sqrt{2}=2(2-\sqrt{2})$, which is greater than zero.
Therefore the perimeter of P is less than the perimeter of Q .
Also, $4+3 \sqrt{2}-(6+\sqrt{2})=2 \sqrt{2}-2=2(\sqrt{2}-1)$, which is also greater than 0 .
Therefore the perimeter of Q is less than the perimeter of R.
Hence, in ascending order, the lengths of the perimeters are $\mathrm{P}, \mathrm{Q}, \mathrm{R}$.
24. A We are given that $10 \times 2^{m}=2^{n}+2^{n+2}$. Therefore $5 \times 2 \times 2^{m}=2^{n}\left(1+2^{2}\right)$.

Hence $5 \times 2^{m+1}=2^{n} \times 5$. So $m+1=n$. Therefore the difference between m and n is 1 .
25. A The diagram shows exactly one third of the shaded area in the original diagram. It is made up of the quadrilateral $U O P X$, together with a sector of the outer circle, $P O Q$, where O is the centre of the original circle.
Since P and Q are two of the six points equally spaced around the circle, $\angle P O Q=\frac{1}{6} \times 360^{\circ}=60^{\circ}$. The outer circle
 has radius 2 cm , so the area, in cm^{2}, of sector $P O Q$ is $\frac{1}{6} \times \pi \times 2^{2}=\frac{2 \pi}{3}$.

Since U and P are also equally spaced, $\angle U O P=60^{\circ}$. So $\angle U O X=30^{\circ}$.
Hence the area of triangle $U O X$, in cm^{2}, is $\frac{1}{2} \times 1 \times 2 \times \sin 30^{\circ}=\frac{1}{2}$.
So the area of quadrilateral $U O P X$ is $1 \mathrm{~cm}^{2}$.
Therefore the total shaded area, in cm^{2}, in the original diagram is $3 \times\left(\frac{2 \pi}{3}+1\right)=2 \pi+3$.

